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Abstract

In this paper we analyze the state-dependent risk-spillover in different economic areas. To this

end, we apply the quantile regression-based methodology developed in Adams, Füss and Gropp

(2014) approach to examine the spillover in conditional tails of daily returns of indices of the bank-

ing industry in the US, BRICs, Peripheral EMU, Core EMU, Scandinavia, the UK and Emerging

Markets. This methodology allow us to characterize size, direction and strength of financial conta-

gion in a network of bilateral exposures to address cross-border vulnerabilities under different states

of the economy. The general evidence shows as the spillover effects are higher and more signifi-

cant in volatile periods than in tranquil ones. There is evidence of tail spillovers of which much is

attributable to a spillover from the US on the rest of the analyzed regions, specially on European

countries. In sharp contrast, the US banking system show more financial resilience against foreign

shocks.
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1 Introduction

Financial contagion has received considerable attention in empirical finance, particularly, after the

recurrent episodes of financial crisis that have followed the October 1987 stock market crash. The

main interest in this literature is to analyze how shocks to prices of certain financial assets are trans-

mitted into prices of other financial assets. Early papers analyzed the existence of Granger-type

causal relationships in the conditional mean of returns during periods of distress; see, for instance,

Eun and Shim (1989) and Becker, Finnerty and Gupta (1990); see also Longstaff (2010) and Che-

ung, Fung and Tsai (2010) for recent analyses. In a similar vein, a considerable body of research

has analyzed causality in variance and time-varying conditional correlations aiming to characterize

the existence of volatility spillovers; see, among others, Hamao, Masulis and Ng (1990), Engle, Ito

and Lin (1990), King and Wadhwani (1990), Susmel and Engle (1994), Baele (2005), and Dungey,

Gonzalez-Hermosillo and Martin (2005). More recently, the severity of the global recession has mo-

tivated a considerable interest in understanding the linkages that interconnect financial losses during

periods of distress, particularly, in financial institutions. This systemic crisis, albeit initiated in the

US subprime mortgage-backed securities market, resulted in the collapse of major financial insti-

tutions, bankruptcies, declines in credit availability, and sharp drops in global real Gross Domestic

Product (GDP). This has motivated a new regulatory setting in the banking industry in the aftermath

of the crisis, and a rapidly-growing literature devoted to systemic risk and tail-spillover modelling;

see, among others, Segoviano and Goodhart (2009), Acharya, Pedersen, Philippon and Richardson

(2010), Adrian and Brunnermeier (2011), Brownlees and Engle (2012), López-Espinosa, Moreno,

Rubia and Valderrama (2012), Diebold and Yilmaz (2012), Kim and Hwang (2012), and Rodríguez-

Moreno and Peña (2013).

In this paper, we characterize the existence of state-dependent risk-spillovers in the daily returns

of representative indices of the banking industry in different economic areas. The main aim is

to appraise the sensitivity that characterizes the local vulnerability of domestic banking sectors

to shocks originated in or transmitted by banks in a foreign area under different (stressed and non-

stressed) characteristic scenarios. This analysis allows us to formally identify the main transmission

channels in the international banking system and provide a quantitative risk assessment of the size

of contagion. Cross-country contagion in the banking industry typically occurs because large-scale

banks usually hold an important proportion of claims on foreign borrowers over total assets in

their balance sheets. A shock in a foreign counterparty that decreases the market value of these

claims leads to a balance-sheet contraction which may be further transmitted (and even amplified)
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into the domestic system through the local interbank network. In this context, we can assess the

vulnerability to cross-country shocks in foreign countries by measuring the sensitivity of expected

losses in domestic banks to contemporaneous changes in the expected losses of foreign banks. In

this study, we consider different economic scenarios, all of which are endogenously determined by

the empirical distribution of expected losses in the local industry. Our main interest is to analyze

contagion under adverse market conditions.

To this end, we focus on representative indices of the banking industry in the US, the UK,

peripheral and non-peripheral countries in Europe, and emerging-country economies. All these data,

focused on most of the major financial areas of the world, are directly available from Datastream.

The sample spans December 1999 through November 2013 and includes periods of expansion and

financial recession that caused considerable distress in the banking sector, more prominently, during

the 2007-2009 global recession, and the 2010 European sovereign debt crisis. Using these data, we

characterize the empirical links in the lower tails of the bank-industry portfolio returns building

on a variant of the two-stage quantile-regression methodology (henceforth 2SQR) implemented in

Adams, et al. (2014). The most distinctive feature of this methodology is that it generates state-

dependent estimates that are robust to endogeneity bias. Hence, we can consistently estimate the

coefficients that characterize the direction and the strength of financial contagion in a network of

bilateral exposures using a contemporaneous equation system. Based on these estimates, we address

the existence of significant cross-border vulnerabilities whose intensity can vary as a function of the

underlying economic conditions. Furthermore, we characterize impulse-response functions that

determine the rapidity and persistence of contagion of a shock under different economic scenarios.

Analyzing tail-interdependences requires suitable estimates of conditional expected losses, a la-

tent process that cannot be observed directly. While the analysis in Adams et al. (2014) is conducted

on GARCH-type based estimates of the VaR process of US institutions, we rely on estimates of the

Expected Shortfall (ES henceforth) process in our international sample. In the financial industry,

VaR is an important measure because it is normally computed to meet regulatory capital. How-

ever, it has been widely criticized because it is not a coherent measure of risk (Artzner, Delbaen,

Eber and Heath, 1999) and, more importantly, it may be completely insensitive to extreme, but in-

frequent market movements. In contrast, ES is a coherent risk measure that overcomes all these

critiques. We proceed to estimate ES at the usual 1% shortfall probability using the expectile-based

approach suggested by Taylor (2008a). Although other alternative estimation procedures are avail-

able, expectile-based modelling does not require specification of the underlying distribution of the

data. This property is particularly appealing in the current context because it preserves the semi-

2



parametric nature of the 2SQR methodology. As a result, the main conclusions from our analysis are

not driven by any particular assumption concerning the formally unknown distribution of returns.

Our analysis provides specific insight into the degree of vulnerability of the banking industry in

the main economic areas in a global context. While previous studies have shown the existence

of tail-interconnections between individual banks and the global financial system (e.g., López-

Espinosa et al. 2012), our analysis provides a complete picture of bilateral relationships that feature

transmission channels. Consistent with the previous literature, the main results from our analysis

suggest that the degree of interconnectedness and, hence, financial vulnerability, largely increases

during periods of distress; see also King and Wadhwani (1990) and Ang, Chen and Xing (2006).

For instance, under normal market conditions, a one percent increase in the expected losses in the

US banking system increases the ES of core EMU banks by approximately 0.01 percentage points.

Under adverse market circumstances, however, the same shock increases the expected losses by

nearly 0.072 percentage points. Similar results hold consistently on the remaining areas, showing

that cross-border contagion increases systematically and significantly during periods of distress.

This study also reveals directionality in cross-border contagion. According to our estimates,

the US banking sector is the greatest source of financial contagion in the financial industry. In

a stressed scenario, the largest estimates of cross-country spillover coefficients are systematically

related to this country. While previous literature in contagion agrees that shocks that originate in

the US are larger and more persistent (Hamao et al., 1990), and that the US is a major exporter

of volatility in financial markets (Theodossiou and Lee, 1993), there are specific reasons that ex-

plain the systemic relevance of the US banking industry. The global vulnerability to the US stems

from the fact that large-scale local banks with a specific weight in the local sector are typically

internationally-diversified institutions for which, characteristically, a large portion of their foreign

exposures and cross-border activities over total assets are held on US-issued financial instruments;

see, among others, Weistroffer and Möbert (2010) and Degryse, Elahi and Penas (2010). Hence,

write-downs can have a direct impact on the balance sheets of these banks, which are further trans-

mitted to other domestic banks through the local network. As a result, most financial sectors are

particularly vulnerable to idiosyncratic shocks originating either directly or indirectly in the US.

On the other hand, and in sharp contrast, the US banking system tends to show more financial

resilience against foreign shocks. When compared to European banks, the characteristic business

model in US banks is featured by a combination of low foreign lending to total assets ratio and low

borrower concentration (Weistroffer and Möbert 2010). As a result, US banks use local lending

more intensively than European banks and, simultaneously, their foreign lending activities are more
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diversified across different countries. While our analysis makes clear that the US banking sector

is vulnerable to shocks in European countries (particularly, the UK) as well as emerging-market

economies, this characteristic business model would make the system more resilient to these shocks.

This evidence seems particularly relevant for central banks and international supervisors concerned

with macroprudential policies to mitigate systemic risk, since low borrower concentration could be

a determinant factor to limit the systemic importance of financial institutions. This issue merits

attention in further research.

The remainder of this is paper organized as follows. Section 2 introduces the methodology

implemented to estimate ES and characterize risk spillovers through 2SQR. Section 3 presents the

data and discusses the main stylized features. Section 4 discusses the estimation of the ES process on

the data. Section 5 presents the main results from the 2SQR analysis. Finally, Section 6 summarizes

and concludes.

2 Measuring tail interdependences

We start our analysis by introducing mathematical notation and technical definitions in order to

characterize risk spillovers. Since our modelling approach relies mainly on the expectile-based

methodology proposed by Taylor (2008a) to estimate ES, we first introduce this semi-parametric

procedure. We then discuss the main features of the 2SQR methodology used to characterize tail

spillovers in the global banking industry.

2.1 Estimating Expected Shortfall: an expectile-based approach

VaR, defined as the conditional quantile of the loss-function of a portfolio at a certain horizon, is

a fundamental tool for downside-risk measurement and risk management in the financial industry.

However, this statistic has been widely criticized because is not a coherent measure of risk. It is

not sub-additive and, more importantly, is insensitive to the magnitude of extreme losses as it only

accounts for their probability; see, among others, Artzner et al. (1999) and Acerbi and Tasche

(2002). The ES, proposed by Artzner et al. (1999), constitutes a valid alternative to VaR which has

gained increasing prominence.

Formally, ES is defined as the conditional expectation of the return of certain portfolio, rt , when

it exceeds the VaR threshold VaRt (λ ) associated to a certain shortfall probability λ ∈ (0,1) , i.e.,

ESt (λ ) = E (rt | rt <VaRt (λ )) (1)
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noticing that VaRt (λ ) denotes the λ -quantile of the conditional distribution of rt , i.e., it verifies

Pr(rt ≤VaRt (λ ) |Ft−1) = λ , where Ft is the set of available information up to time t.

The estimation of the ES process can be more demanding than VaR and typically requires ex-

plicit assumptions on the conditional distribution of the data; see McNeil, Frey and Embrechts

(2005). Taylor (2008a) introduced a procedure based on the expectile theory developed by Aigner,

Amemiya and Poirier (1976) and Newey and Powell (1987) that seems well suited for modelling

both ES and VaR. The distinctive characteristic of this methodology is that it builds on estimates

of the conditional dynamics of expectiles, a quantile-related statistic that can be related to ES. The

main advantage of this procedure is that it yields estimates of the ES process without relying on

a particular distribution; see Kuan, Yeh and Hsu (2009), and De Rossi and Harvey (2009) for re-

lated approaches. In the remainder of this subsection, we review the concept of expectiles and its

connection with ES, introducing the procedure suggested by Taylor (2008a).

Let {yt} , t = 1, ...,T, be a stochastic process with finite moments E (|yt |κ) for some positive

large enough κ . For ease of exposition, we assume that {yt} is a martingale difference sequence

(MDS) such that E (yt |Ft−1) = 0. This assumption implies no loss of generality in practice, since

we can consider the residuals from a demeaned process otherwise, as is customary in the literature

devoted to downside risk modelling. For certain constant parameter θ ∈ (0,1) , the population θ -

expectile can be defined as the minimizer of an asymmetrically-weighted sum of squared errors,

namely,

min
mθ∈R

T

∑
t=1

[
θ(yt −mθ )

2I(yt ≥ mθ )+(1−θ)(yt −mθ )
2I(yt < mθ )

]
(2)

where I(·) denotes the indicator function.1 It is easy to see that when θ = 1/2, the so-called Asym-

metric Least-Squares (ALS) estimate of mθ reduces to the sample mean. Therefore, in the same

way in which quantiles generalize the median for θ ̸= 1/2 (in the sense that the θ -quantile specifies

the position below which 100θ% of the probability mass of the random process Y lies), expectiles

generalize the mean for θ ̸= 1/2. In particular, the expectile function (2) determines the value point

such that 100θ% of the mean distance between this value and Y comes from the mass below it;

see Yao and Tong (1996). Kuan et al. (2009) provide an additional economic interpretation for

expectiles in a financial risk setting. According to these authors, mθ can be seen as the ratio of

1Note the similitude between expectiles mθ and quantiles, say qθ , since the latter arise as the solution of the objective
function minqθ ∑T

t=1 [θ |yt −qθ | I(yt ≥ qθ )+(1−θ)|yt −qθ | I(yt < qθ )] .
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expected margin shortfall to the expected total cost of the capital requirement and, hence, represents

the relative cost of the expected margin shortfall in the derivative contracts framework.

Expression (2) can be generalized straightforwardly to allow for time-varying conditional dy-

namics, considering a measurable function, say m(xt ;βθ ) , with xt denoting a k-dimensional vector

of covariates and βθ a conformable vector of unknown parameters. Setting m(xt ;βθ )= x′tβθ , Newey

and Powell (1987) show the consistency and asymptotic normality under the i.i.d condition of the

ALS estimator β̂θ , defined as the solution of

min
b∈Rk

T

∑
t=1

[
θ u2

t
(b) I(ut (b)≥ 0)+(1−θ)u2

t
(b) I(ut (b)< 0)

]
(3)

with ut (b) := yt −m(xt ;b). Kuan et al. (2009) generalize this setting, permitting stationary and

weakly-dependent data under suitable regularity conditions.

As pointed out by Koenker (2005), linear conditional quantile functions in a location-scale set-

ting imply linear conditional expectile functions, and so there is a convenient rescaling of the ex-

pectiles to obtain the quantiles and vice versa. The existence of a one-to-one mapping implies that

the conditional θ -expectile is equivalent to the, say, λθ -quantile, where the latter is characterized

by the probability with which observations would lie below the conditional expectile, noting that

typically θ < λθ for values in the lower tail (Efron 1991). Because any expectile is also a quan-

tile, conditional expectile functions can be used to estimate VaR functions given a suitable choice

of θ that ensures the desired λ -coverage level; see, for example, Taylor (2008a) and Kuan et al.

(2009). The advantage of conditional expectile regressions over quantile regressions is that the

ALS loss-function (3) is absolutely differentiable, so computing conditional expectiles is consider-

ably simpler. More importantly, as shown by Newey and Powell (1987), the asymptotic covariance

matrix of the parameters can be determined without estimation of the density function of the errors.

Newey and Powell (1987) and Taylor (2008a) discuss the theoretical relationship between ex-

pectiles and ES. In particular, for a MDS process, it follows that

ESt (λθ ) =

(
1+

θ
(1−2θ)λθ

)
mt (θ) (4)

where the short-hand notation mt (θ) := m(xt ;βθ ) shall be conveniently used in the sequel to sim-

plify notation. Hence, the ES at certain shortfall level λθ is proportional to the λθ -th empirical

quantile, which in turn could be estimated as the θ -th conditional expectile. The fact that ES can be

seen as a simple rescaling of a suitable expectile is not surprising since, as pointed out by Newey
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and Powell (1987), mt (θ) is determined by the properties of the expectation of the random vari-

able Y conditional on Y being in a tail of the distribution. Consequently, expression (4) allows us

to generate estimates of the ES process without making any explicit assumption on the particular

distribution of the data, only specifying the functional form that characterizes mt (θ) as a function

of (unknown) parameters. More generally, Yao and Tong (1996) have discussed non-parametric

techniques to infer this process.

In the same spirit as the class of non-linear quantile models introduced by Engle and Manganelli

(2004), Taylor (2008a) considers a non-linear autoregressive-type specification for the conditional

expectile function. In this class of models, mt (θ) varies smoothly over time and depends on the

lagged values of the volatility process as proxied by |yt |. For instance, the so-called Symmetric

Absolute Value (SAV) model assumes

mt (θ) = β0 +β1mt−1 (θ)+β2|yt−1| (5)

which implies that the ES process is driven by

ESt(λθ ) = γ0 + γ1ESt−1(λθ )+ γ2|yt−1| (6)

with γ1 = β1, and γi = βi

[
1+ θ

(1−2θ)λθ

]
, i ∈ {0,2} .

This parametric specification is strongly reminiscent of the characteristic GARCH-type equation

used to model the conditional variance of returns, widely known because of its parsimony and

superior forecasting power in practice. In fact, if {yt} is an MDS with conditional volatility σt

driven by the linear GARCH model of Taylor (1986) (namely, σt = ω0 +ω1σt−1 +ω2 |rt−1|; ω0 >

0, ω1,ω2 ≥ 0), then both the conditional quantile and the expectile functions are driven by SAV-

type dynamics, and so is the ES process, although the contrary is not necessarily true. Because of

the simplicity, we shall estimate ES using (6), noting that the main conclusions are not qualitatively

different from other alternative specifications that involve further parameters such as asymmetric

expectile-based model.

2.2 Two-stage quantile regression

Given the shortfall probability λ , let ES∗it (λ ) t = 1, ...,T, i ∈ S , denote the estimates of the ES

process related to the banking sector in the economic area i, with S representing a certain set of

such areas. The superscript emphasizes that we build on feasible estimates of the unobservable latent
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process obtained, for instance, by applying the procedures described in the previous section. Recall

that our main interest is to characterize the bilateral relationships that may arise contemporaneously

between the tails of the conditional distributions of the domestic indices included in S .

To this end, we may run a system of linear regressions. Thus, for any i ∈ S , we may regress

ES∗it (λ ) on the estimates of the remaining ES processes in S , possibly accounting for persistence

through lags of the dependent variable, and additionally including a number of controlling variables,

say (z1t , ...,zkt)
′. For instance, if we assume first-order autoregressive dynamics, our interest is to

estimate the system of equations:

ES∗it (λ ) = αi +ϕiES∗it−1 (λ )+ ∑
s∈S
s ̸=i

δi|sES∗st (λ )+
k

∑
l=1

ξilzlt + εit (7)

for all i ∈ S , where εit is a random error term, and the parameters δi|s would capture the intensity

of the tail spillover in portfolio i given portfolio s. Note that the analysis recognizes bidirectionality

in tail spillovers, since it may generally follow that δi| j ̸= δ j|i, for any i, j ∈ S , i ̸= j.

In the estimation of this system, two important features should be noted. First, the size of the

cross-border risk-spillover coefficients δi|s are likely to vary depending on the underlying economic

conditions. During normal or tranquil periods, tail-interrelations may be of little or no economic

importance, yet become largely significant in periods of financial distress, particularly when dealing

with portfolios related to the banking industry; see, for instance, Adrian and Brunnermeier (2011),

López-Espinosa et al. (2012). More importantly, the ES processes involved in (7) are generated

simultaneously, so least-squares (LS) and other standard estimation procedures may not render con-

sistent estimates in this context owing to endogeneity.

While a number of alternative procedures are possible, the 2SQR methodology implemented in

Adams et al. (2014) overcomes both challenges in a simple and particularly tractable way. First, the

procedure builds on the quantile-regression (QR) methodology at different quantiles τ ∈ (0,1) of

the distribution of the left-hand side ES process in (7) to endogenously capture state-related effects

on the coefficients δi|s; see Koenker (2005) for an outstanding overview of the QR methodology.2

Note that, while the shortfall probability λ that defines the ES process is fixed in our analysis (e.g.,

2The LS methodology is useful to characterize the conditional mean of the dependent variable in a (linear) regression
given the set of regressors. When the series take values that depart from the center of the distribution, LS-based estimates
may not capture accurately the underlying relationship between the dependent variable and the regressors, leading to
misleading conclusions. When the main interest is to characterize the relationship during extreme or ’abnormal’ periods,
the quantile-regression methodology is better suited, as it is specifically intended to characterize parameters at any
quantile of the conditional distribution of the data.
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λ = 0.01), we can consider a sequence of quantiles {τn} that characterize the sample distribution of

ES∗it (λ ) to capture the effects of different economic scenarios on the coefficients δi|s. Normal and

tranquil periods would feature the upper tail of the conditional distribution of ES∗it (λ ), whereas low

percentiles in the left tail would be determined by the excess of volatility observed during periods

of financial distress. Second, the 2SQR procedure uses the same estimating strategy as the well-

known two-stage least squares (2SLS) in order to correct the endogeneity bias. In particular, the

endogenous right-hand side variables, ES∗st (λ ), are replaced with suitable predictions from ancillary

equations based on (weakly) exogenous variables; see, Amemiya (1982), Powell (1983), and Kim

and Muller (2004).

Consequently, in the spirit of Adams et al. (2014), we consider the system of quantile-regression

equations

ES∗it (λ ) = αi (τ)+ϕi (τ)ES∗it−1 (λ )+ ∑
s∈S
s ̸=i

δi|s (τ)ES∗st (λ )+
k

∑
l=1

ξil (τ)zlt + εit (8)

for all i ∈ S , and estimate the parameters involved in these equations using the 2SQR procedure.

Note that the size of all parameters may vary on the τ quantile. While we shall consider a broad

range of quantiles τ ∈ [0.1,0.9] in a general estimation of this equation system, for the sake of

conciseness we shall report and discuss the results focusing on the representative quantiles τ = 0.15,

τ = 0.5, and τ = 0.85. These quantiles in the left, center, and right tail of the empirical distribution

of ES∗it (λ ) characterize the local banking sector during volatile (or excited), normal (or average),

and tranquil (or low-volatile) periods, respectively.

The 2SQR methodology proceeds as follows. In the first stage, the right-hand side variables

ES∗st (λ ) that characterize the i equation in (8), s ∈ S , s ̸= i, are regressed on a set of instruments

to generate predicted values, say ES∗∗st (λ ) , which are computed as the fitted values from LS instru-

mental estimation. Following standard practices, we take a constant and a number of lags from the

right-hand side variables ES∗st (λ ) as instruments. Note that, in order to ensure that the system is

identified, the set of instruments does not include lags from the left-hand side variable, ES∗it−l (λ ) ,
l ≥ 1; see Adams et al. (2014).3

In the second stage, the set of equations (8) are estimated individually using QR, treating the

first-stage predicted values ES∗∗st (λ ) as regressors. Under sufficient conditions, this procedure yields

3This restriction implies that lags of the dependent variable only affect the ES of the i region. In other words, after
controlling for contemporaneous spillovers from other areas, there is no additional spillover effect in a certain area
related to the lagged values of the ES in other areas.

9



consistent and asympotically-normal distributed estimates of the main coefficients in (8); see, for

instance, Powell (1983) and Kim and Muller (2004). The estimation of the covariance matrix in

this context, however, may not be trivial, because it depends on a number of nuisance terms that

characterize both the variability of the main parameter estimates in the main equation as well as

the parameter uncertainty stemming from the first-stage estimation. To deal with this issue, we

implement a bootstrapping scheme based on the maximum entropy algorithm proposed in Vinod

and López-de-Lacalle (2009); see also Chevapatrakul and Paez-Farrel (2014) for related work.

3 Data

The dataset used in this paper is formed by daily continuously compounded returns from value-

weighted portfolios representative of the local banking industry in different economic regions. The

choice of portfolio data allows us to eliminate the idiosyncratic noise that may affect the main con-

clusions in a study on individual firms. The sample comprises the period from 31/12/1999 through

07/11/2013, with 3,596 daily observations. Data are directly available from Datastream, which pro-

vides closing prices of different banking-industry indices in the following economic regions: US,

UK, Peripheral EMU area (PE), Core EMU area (CE), Scandinavia area (SC), the so-called BRICs

area (BR), and Emerging Markets (EM). Together with this regions, we consider a Global Banking

index (GB) to control for exposures to global shocks. All these indices are formed by the main

banks which are publicly traded in the countries that make up the different economic areas. In turn,

publicly-traded banks are usually bank-holding companies characterized by a representative size

in the local industry, sophisticated business models, and intense cross-border activities. All these

characteristics are commonly associated to systemic importance. As in other studies concerned with

systemic risk in the global banking industry, returns are computed from prices denominated in US

dollars; see López-Espinosa et al. (2012).

The PE index, referred to as PIIGS index in Datastream, is formed by the main banks in Greece,

Ireland, Italy, Portugal, and Spain. The CE index includes the main banks in countries that belong

to the EMU, but not to the PE area, namely, Austria, Belgium, Cyprus, Finland, France, Germany,

Luxembourg, Malta, Netherlands, and Slovenia. Scandinavia is formed by banks based in Den-

mark, Finland, Norway, and Sweden. We distinguish between PE and CE because both areas are

characterized by different macroeconomic drivers and because these areas exhibited a considerable

heterogeneity in response to the systemic shocks. The Scandinavian countries and the UK have

local currencies, which provides them with an invaluable tool to handle an adverse economic sce-
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nario through currency devaluation.4 The BR index is formed by banks in the so-called BRIC area,

namely, Brazil, China, India, and Russia. It represents a subarea of emerging economies that has

undergone remarkably strong development over the recent years. The EM is a global banking index

formed by 300 banks operating in emerging-market economies, mainly, Central and Eastern Eu-

rope, Asia, and Latin America. Similarly, the GB is an index representative of the global banking

industry. It pools data from 536 banks around the world. Appendix provides a list with the banks

included in any of these areas.

Table 1 reports the usual descriptive statistics on the returns of all these indices. Returns at the

daily frequency exhibit the usual stylized features, such as time-varying volatility, skewness, and

excess kurtosis. Analysis of the (annualized) mean and volatility reveals the consequences of the

financial crises in the banking sector, particularly, in advanced economies. Returns in the banking

industry of the US and EMU areas over the period analyzed are characterized by large levels of

volatility –mainly, in the second half of the sample– and low average returns. More specifically, the

annualized mean return is approximately zero in the US (0.09%), and negative in the CE (-3.50%)

and the UK (-4.02%). Countries in the peripheral EMU area have suffered the consequences of

the crises more intensely, and exhibit the lowest mean annualized return (-5.04%) in the sample.

On the other hand, banks in emerging countries have shown more resilience to the global financial

recession and the subsequent European sovereign debt crisis. The returns in emerging countries

over the period are characterized by lower volatility levels and higher mean returns.5

[Insert Table 1]

4 Estimating Expected Shortfall

To estimate the ES process of the returns, we set λ = 0.01, the regulatory shortfall probability level

required by Basel disposals and the most common choice in downside-risk analysis. The daily fre-

quency is consistent with the holding period targeted for internal risk control by most financial firms;

see, among others, Taylor (2008b). Consistent with standard procedures in downside-risk analysis,

4Note that the SC index includes Finland, a country in the EMU area. Nevertheless, this country contributes with
two banks to the total index. In our view, this is unlikely to introduce any form of bias.

5Some caution should be applied when comparing the mean-variance profile across these areas because of the
influence of cross-country diverisfication. Whereas the US- and UK-related ones are country specific indices, the other
series represent the banking industries in different countries, which introduces a certain level of diversification.
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we compute ES on demeaned returns, r̃t , determined as the residuals from a first-order autoregres-

sion; see, for instance, Poon and Granger (2003). The ES processes are then estimated individually

for any of the economic areas using the expectile-based model discussed in the previous section. In

particular, given λ = 0.01, the latent conditional expectile in the i-th area is assumed to obey time-

varying dynamics given by mit (θ) = βi0 +βi1mit−1 (θi)+βi2|r̃it−1|, t = 1, ...,T. In the same spirit

as Engle and Manganelli (2004), we initialize mi0 (θi) to the empirical θi-expectile based on the first

300 observations in the sample for each series. Giving θi, the unknown parameters (βi0,βi1,βi2)
′

that characterize the time-varying dynamics of ES are determined as the numerical solution of the

ALS problem (3) . Following Efron (1991) and Taylor (2008a), θ̂i is optimally determined as the

value for which the proportion of in-sample observations lying below the conditional expectile, say

λ̂i,T , matches the shortfall probability λ = 0.01 that characterizes exceptions in the ES. To this

end, we estimated the model for different values of this parameter, using the optimization proce-

dure described in Engle and Manganelli (2004) and Taylor (2008a)6, in a trial-and-error algorithm

with stopping rule |λi − λ̂i,T | < 10−06. Note, therefore, that the estimates of ζi = (βi0,βi1,βi2;θi)
′

are determined simultaneously in this context, and the values ensure that the empirical coverage

probability λ̂i is approximately 0.01.

Table 2 reports the ALS estimates for the different economic areas analyzed. Since the latent ES

is a volatility-related process, the estimates of the ES are strongly persistent, with the autoregressive

coefficient β1 = γ1 ranging from 0.69 (UK) to nearly 0.90 (PE). Similarly, absolute-valued returns,

the most common proxy of volatility in practice, have a strong influence on ES.7 On average, the

value of the optimal expectile θ is 0.002, which as expected, is smaller than the target quantile, λ =

0.01. Table 2 also reports the p-values of several test statistics which are routinely implemented to

backtest VaR-type forecasts. Since expectiles can be used to estimate VaR, as discussed previously,

we can analyze if the resultant estimates provide a reasonable fitting to the data using backtesting

procedures on the in-sample estimates m̂t (θ) , t = 1, ...,T . More specifically, we implement the

unconditional coverage test by Kupiec (1995) and the conditional coverage test by Christoffersen

(1998). The Kupiec test requires the empirical coverage λ̂ to be close enough to the nominal λ =

0.01. Since the optimal value of θ is chosen under the condition that λ̂ must match λ , correct

6We randomly generate 1000 parameter vectors in order to evaluate the ALS loss-function. The ten vectors that
produced the lowest values were then used as initial values in a Quasi-Newton algorithm. The estimates from the vector
producing the lowest value in the loss-function is to be chosen as the final parameter vector.

7Note that the estimates of β2 in the expectile-related equation (and, hence, γ2 in the ES-related equation) are
negative, reflecting that higher levels of volatility give rise to a greater ES. While it is costumary to report both VaR in
ES in absolute levels (as it is understood that they refer to losses), we respect the negative sign that characterizes both
downside-risk measures according to the definitions in Section 2.
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conditional coverage is trivially ensured. The conditional tests by Christoffersen (1998) address

simultaneously the hypotheses of correct unconditional coverage and first-order independence in

the sequence of VaR exceptions. Table 2 shows massive p-values associated to both test statistics.

The overall evidence suggests that expectiles do not generate unreliable estimates for downside risk

modelling; see also Taylor (2008a). 8

[Insert Table 2]

Table 3 reports the usual descriptive statistics for the estimates of the expectile-based ES pro-

cesses as well as the sample correlation between these series. The daily average ranges from -3.84%,

for the emerging market index EM, to -6.24%, in UK, the country with the lowest daily return in

the sample. These series show a considerable degree of dispersion, with minimum values that, for

instance, reached -38.57% in the UK in March 2009. The analysis on sample correlations shows

that extreme expected losses in the banking industry are largely correlated across different countries

and economic areas, with correlations ranging from 51% (for the pair PE and BR) to 91% (for the

pair PE and CE). This evidence suggests a considerable degree of commonality and the existence

of global trends or common factors that propitiate systemic risk in the banking industry.9

[Insert Table 3]

Finally, Figure 1 shows the time-series of (demeaned) returns and the expectile-based estimates

of the ES for each economic area in the sample. As expected, ES exhibit persistent time-varying

dynamics characterized by massive bursts of volatility which are directly related to the events that

characterized a backdrop of extreme volatility associated to the episodes of crises in the sample.

[Insert Figure 1]
8We obtain similar conclusions using alternative ES models such asymmetric expectile-based model and different

parametric specifications based on GARCH model volatility estimates.
9Several papers have exploited commonality to characterize systemic risk. For instance, Rodríguez-Moreno and

Peña (2013), who use the first principal component in CDS spreads to measure systemic risk.
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5 Risk spillovers in the global banking industry: 2SQR estima-

tion

Given the expectile-based estimates, we now discuss the main results from 2SQR estimation. In the

implementation of this methodology, we follow Adams et al. (2014) and estimate equation system

(8) , controlling for variables that may systematically affect the left-hand side variables. Because

the banking industry is vulnerable to global trends, as discussed previously, we use the ES of the

global banking index GB to capture the exposure of banks in domestic areas to this class of shocks.

This ensures that the spillover coefficients δi|s that relates bank losses in two economic areas can be

interpreted in a causal way, as they characterize vis-à-vis the cross-border transmission of downside

risk once global-related effects are controlled for.10 Furthermore, the inclusion of a global variables

allows us to circumvent potential concerns related to neglected variables, for instance, associated to

economic areas or individual countries which are not explicitly acknowledged in our analysis. The

potential influence of all these areas is briefly resumed in the global index.

In addition, we consider two sets of economic regions. The first one focuses on tail interdepen-

dences in the US, peripheral and non-peripheral EMU countries, and emerging markets, namely,

SB = {US,CE,PE,EM} . While this baseline set includes a reduced number of economic areas,

these are of major global economic relevance and have been subject to considerable financial stress.

This analysis allows us to present a detailed analysis, focused on the main interactions of this lim-

ited set. This discussion shall be completed later by considering an extended set which includes

all the economic regions considered in this paper, SE = {SB,UK,SC,BR}. This analysis not only

provides a more complete picture, but also allows us to address whether conclusions are generally

sensitive to the omission of potentially economic regions.

5.1 Basic equation system

5.1.1 Main results

Table 4 reports the parameter estimates from equation system (8) given the set of countries SB =

{US,CE,PE,EM} , the shortfall probability λ = 0.01, and the representative quantiles τ ∈{0.15,0.50,0.85}
that characterize the underlying economic conditions in the local industry that receives the spillover.

10In the literature of financial contagion, it is usual to distinguish between shock transmission through common
channels, which affect multiple countries at the same time (e.g., through blanket withdrawals by common lenders),
or through country-specific channels, which depend on variables that characterize country-specific financial and trade
linkages. Our modelling approach implicitly captures both channels.
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In this system, we allow the global banking index GB to have feedback effects with the areas in SB

by modelling in the same way, i.e., the full system is estimated with 5 equations. Our main interest

is in the coefficients δi|s (τ) and ξi (τ) in these equations. The former capture the contemporaneous

response in the ES of the banking system in area i against a one percent change in the ES of the

banking system in area s. Similarly, the latter capture the exposure of the domestic banking system

to systematic shocks in the global financial system. Statistical significance at the usual confidence

levels is determined on the basis of maximum entropy bootstrap of Vinod and López-de-Lacalle

(2009).

[Insert Table 4]

The estimates of ξi (τ) are positive and significant during normal periods (τ = 0.50). This result

shows that the conditional median of expected losses in the banking industry is driven by a global

component, which essentially agrees with the correlation analysis discussed previously (see Table

3). For instance, the parameter estimates ξ̂PE and ξ̂CE in EMU areas show that, during normal mar-

ket periods, a one percent shock in the ES in the global system will increase the average ES of banks

in PE and CE by 0.036% and 0.017%, respectively. Clearly, the exposure to global shocks under

normal market conditions tends to be smaller for economies with better macroeconomic fundamen-

tal (US and CE), while economies which traditionally have had greater inflation ratios and higher

unemployment rates (PE and EM) are more vulnerable to systemic shocks.

The picture that emerges under the two extreme scenarios in the tails is different. During tran-

quil periods (τ = 0.85), the estimates of the slope ξ are not significant in any of the areas except

in the US.11 Hence, the small bank losses that typically occur during calm periods tend to obey

idiosyncratic patterns which, in general, are not related to other areas. On the other hand, during

periods of financial distress (τ = 0.15), the local vulnerability to global systematic shocks largely

increases and becomes highly significant in all the areas. Note, for intance, that the relative ratio

ξ̂ (0.15)/ξ̂ (0.5) is 4.15 on average, showing a sizeable increment in the overall sensitivity. This

ratio is particularly large (7.46) in non-peripheral EMU countries. According to Table 4, banks in

the Eurozone are more vulnerable to global shocks under a stressed scenario than banks in other

areas. This general pattern is fully evident in Figure 2, which shows the shapes of the estimated

coefficient functions ξ̂i(τ), i ∈ SB, as a function of the quantiles τ ∈ [0.10,0.90]. Clearly, banks

11The coefficient remains positive and significant at the 95% confidence level. In contrast to other countries, the
US shows significant links to the global system even during calm periods. This evidence is probably related to the
importance and relative weight of the US banking system in the global financial system.
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in both peripheral and core EMU exhibit the largest vulnerabilities to global shocks under adverse

market circumstances. The lack of a common regulatory setting and a banking supervisory system,

as well as the absence of effective instruments to handle the consequences of a systemic crisis (e.g.,

the collapse of large-scale banks), have been pointed out as major weaknesses of the European fi-

nancial industry. It was not until June 2012 when EU authorities committed to making decisive

steps towards creating an effective Banking Union, adopting measures that, among others, will lead

to the implementation of a single supervisory mechanism and a common bank resolution program.

The estimates of the autoregressive coefficient ϕi lie in the neighborhood of unit. This is ex-

pected because, as shown in the previous section (see Table 2), ES is a persistent process. Consistent

with the evidence reported by Adams et al. (2014), these estimates are strictly smaller than unit dur-

ing tranquil and normal periods, characterizing mean-reverting paths, and tend to be slightly greater

than one during periods of distress, suggesting non-linear or explossive patterns. Although explo-

sive patterns are often related to model misspecification, in our view this evidence is not particularly

surprising in the current context. The dynamics of the 1% ES process during the more volatile days

that characterize lower quantiles are distinctively driven by the largest outliers in the sample. An

autoregressive coefficient equal to or greater than one is the only way in which an autoregressive

process can accommodate the non-linear patterns which are usually associated with large volatility

bursts that cause extreme market movements.

We now turn our attention to the coefficients δi|s that characterize cross-border tail contagion

between different economic areas. Consistent with the hypothesis that the conditional tails of fi-

nancial returns are prone to commove, the estimates δ̂i|s are mostly positive and highly significant,

particularly, in the excited state. Furthermore, and with regard to global shocks, the size of cross-

country spillovers are characterized by state-dependencies that lead to a great deal of variability as

a function of τ. In particular, cross-country spillovers are greater during periods of distress, but tend

to weaken and eventually vanish during calm periods. This general pattern is fully evident in Figure

3, which shows the shapes of the estimated coefficient functions δ̂i|s(τ) for τ ∈ [0.10,0.90] . This

figure and the estimates of Table 4 make clear that the severity of financial contagions under adverse

conditions can be largely underestimated under normal market circumstances. Consequently, and

as noted in Adams et al. (2014), standard analyses that merely focus on the conditional mean or the

median analysis may lead to potentially misleading conclusions.

It is interesting to discuss the size of cross-border spillovers in the different banking systems as

a response to a shock in a certain economic area, i.e., analyzing the coefficients reported by columns

(second to sixth) in Table 4. For ease of exposition, we comment on the results in the most relevant

16



context characterized by stressed conditions (τ = 0.15). Under these conditions, all the regions

–including the global financial sector– become particularly sensitive to shocks in the US banking

system. In particular, during periods of local stress, a one percent increase in the ES of US banks

directly increases the local ES by 0.072% (CE), 0.043% (PE), and 0.041% (EM). US banks are the

main contributors to the ES of the global financial system under stressed conditions, noting that a

one percent increment in the expected losses of US bank increases the ES of the global financial

system by 0.041%. The idiosyncratic shocks originated in a country are further amplified indirectly

through the feedback effects caused by the network of cross-border exposures. For instance, every

percentage point increase in the ES of the global system caused by the shock in the US is further

transmitted into the local banking areas (including the US) with an intensity which ranges from

0.070% in emerging markets, to 0.127% in the CE.

Consequently, and according to the 2SQR estimates, the US banking system is the most im-

portant source of financial contagion in the sample. Idiosyncratic shocks originated in this country

can affect all the other banking systems (particularly, those in European countries) which are under

stressed conditions. The main reason for the global systemic importance of this country is that, when

considering the international network of global cross-border exposures, the US banking system has

a central and predominant position, since the remaining countries typically hold large portions of

US-issued financial assets, particularly, European countries. For instance, according to the statistics

elaborated by Degryse et al. (2010) on annual data from Bank for International Settlements (BIS)

Consolidated Banking statistics on reporting countries in the period 1996-2006, the bank credits to

the US represent, on average, 25%, 28%, and 30% of the total foreign credits held by Germany,

France, and Netherlands on reporting countries, respectively. The same ratio ranges from 10% (Ire-

land) to 16% (Italy) in the PE area, showing a smaller exposition to the US. European banks kept

large holdings of illiquid US dollar assets which were financed with short-term wholesale fundings

and heavy reliance on cross-currency swaps; see McGuire and Von Peter (2009). When the market

value of these claims collapsed as a consequence of the subprime crisis, European banks suffered

massive losses, which were further amplified when the interbank and swap markets became im-

paired in 2008; see Acharya and Schnabl (2010). The estimates in our analysis successfully capture

the sensitivity of EMU banks to the US and, furthermore, identify a greater sensitivity in the core

EMU area, characterized by a greater reliance on US lending.

The analysis of the spillover coefficients related to the PE banking system shows that the shocks

originated in this area –mainly associated to the European sovereign debt crisis– essentially had

a more local nature than those originated in the early stages of US subprime crisis. The system
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with the largest vulnerability to shocks in the PE area is the one formed by the remaining banks

in the EMU area. The main economies in CE keep large holdings of debt issued by European

peripheral countries. Note, in Figure 3, that the exposure of CE to PE is highly significant for a

large range of percentiles τ but, once more, the interdependence seems stronger in the low quantiles

that characterized stressed conditions. In particular, for τ = 0.15, the average response of expected

losses of CE banks against a one percent shock in the ES of PE is 0.051%. In contrast, banks in

the US and emerging-market economies exhibit weaker exposures to this area. For instance, the

spillover coefficient of US on PE is 0.017. Although this coefficient is statistically significant, it

seems of little economic relevance. In a similar vein, the exposure of the global banking system

to the PE area is not significant. This evidence suggests that idiosyncratic shocks originating as a

consequence of the European sovereign debt crisis in peripheral Europe did not affect the remaining

banking systems systematically.

On the other hand, the systemic exposures of international banks to banks in the core EMU area

are much more important and largely significant in all cases. Among the different areas considered,

the US banking sector, with a tail spillover coefficient of 0.061, is the most vulnerable country to

shocks originating in the CE. This sensitivity is nearly twice as big as that in the remaining areas.

The reason underlying the vulnerability of US banks to CE banks relative to PE banks can be related

to the existence of strong bilateral borrowing activities between these areas. According to Degryse

et al. (2010), the aggregate claims on the reporting countries in the CE area (Austria, Belgium,

Finland, France, Germany and Netherlands) represent around 34% of the total foreign claims held

by US. Among these countries, Germany is the largest borrower, representing 17% of the foreign

bank credits issued by the US. In contrast, Italy, Portugal and Spain together represent 6% of foreign

claims in the US system. Note that although the direct exposure of US to PE is relatively moderate

(the estimated spillover coefficient is 0.017), as discussed previously, the network of cross-border

interconnections within the EMU defines a powerful indirect channel of contagion through the CE

such that idiosyncratic shocks originated in peripheral EMU countries could spread to CE and, from

here, to other economic areas, particularly, the US.

Finally, the 2SQR estimates reveal that, under adverse market conditions, the banking sectors

in the US and the Eurozone are sensitive to shocks in emerging-market economies. Over the last

decades, emerging-market economies have evolved from being peripheral players to become sys-

temically important trade and financial centers (IMF, 2011a). Financial linkages between advanced

and emerging economies are now stronger and as a result advanced economies are more exposed

to the latter group. In the years preceding the global recession, the bigger banks of these areas in-
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creased their participation in emerging markets through local affiliates, which resulted in increased

networks of bilateral exposures; see Tressel (2010). Financial exposures to emerging markets are

mainly concentrated in foreign bank claims (IMF, 2014). According to our analysis, the exposure

to emerging-market risk spillovers varies in importance across the three different regions analyzed,

with the US being the banking sector with the largest vulnerability. The size of the US spillover

coefficient is 0.065, which nearly doubles the size of the two EMU countries.

The relative sensitivity of the US economy to emerging-country economies poses a serious threat

that has been recently outlined by an International Monetary Fund report. This report estimates that

a current drop of one percentage point in emerging-market GDP could hit US GDP by around

a fifth of a percentage point; see IMF (2014). This estimate is, nevertheless, conservative, as it

does not account for direct financial spillovers through the financial sector. As their own report

remarks, if risk premiums react further to the growth shock –due to balance-sheet exposures of

financial intermediaries– financial channels would come into play and the size of the spillover in the

real economy could be larger. Indeed, the analysis in this paper reveals the existence of financial

channels that can introduce contagion in advanced economies from shocks in emerging economies

under adverse market conditions.

[Insert Figures 2-3]

5.1.2 Expected duration of risk spillovers

Given the estimates of the equation system (8), we can characterize the expected duration of a shock

through the Impulse Response Function (IRF) analysis. We adopt the same identification strategy as

Adams et al. (2014), orthogonalizing IRF using the standard Cholesky decomposition, and ordering

the shock transmitting variable last, since there is no theoretical guidance for a priori ordering. Note

that this implies that a shock on the ES of certain region at time t will only affect this region at that

time, spreading to the remaining areas in the following periods. Although this approach may lead

to conservative IRF (which, consequently, can be regarded as the smallest estimated response given

a shock), the main benefit is that it is not necessary to impose a potentially ad-hoc ordering because

all economies are treated equally; see Adams et al. (2014) for details. As usual in this literature, we

assume a unit shock of one standard deviation.

Figure 4 depicts the time-profile of the IRFs, characterizing the reaction of the domestic banking

sector in each economic region in SB against a unit shock in the ES of the global financial system.
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We consider tranquil, normal, and volatile market conditions. In this context, the size the immediate

response depends on the spillover coefficients ξi (τ), whereas the persistence that characterizes the

IRF depends on the size of these coefficients and the autoregressive coefficients ϕi (τ). As expected

from the analysis reported in the previous section, the IRF characterize heterogenous responses

across the economic regimes analyzed. In particular, during tranquil periods, a systematic shock

in the global financial industry tends to cause minor or no significant impact in the domestic areas,

being quickly absorbed by the local systems. Under normal market conditions, however, systematic

shocks trigger a more pronounced response in the local areas which, furthermore, tend to last over a

considerably larger period of time. On average, a one-standard-deviation shock in the global system

increases the domestic ES in absolute terms in an amount which ranges from 9.27% (US) to 12.81%

(CE) of the size of the shock. The half-life of the IRF, defined as the number of periods required

for the IRF to dissipate the response to a unit shock by half, ranges from 45 days (PE) to 130

days (EM). Nevertheless, the IRFs are strongly persistent, and it takes around 400 days to dissipate

completely the effect of the shock.12 While the shock seems to cause a greater impact on CE, the

overall response under normal circumstances is very similar in all the areas analyzed.

In a stressed scenario, the overall reaction against systematic shocks in the global banking indus-

try is more pronounced. Furthermore, the differences across countries are now much more evident.

In particular, the most vulnerable area to systematic shocks is the Eurozone. The peaks of the IRFs

in CE and PE lead to spillovers of about 20.91% and 16.64% of the size of the global shock. These

represent substantial increments in the size of the spillover with respect to the normal scenario,

particularly, in the CE area, although we stress that estimates should be regarded as potentially con-

servative in our approach. Interestingly, while the immediate response to a global shock is greater

in CE, the IRF of PE decays at a slower rate, suggesting that the effects of a systematic shock in

that area tend to remain significant over an extended period. Indeed, the half-life in the CE and PE

areas is 87 and 133 days, respectively. On the other hand, systematic shocks cause a more moderate

response in emerging-market economies, particularly, in the US, for which the peak of the IRF of

US is located at 9.32% the size of the unit shock. Clearly, the IRF of the US is dominated by the re-

maining IRFs, suggesting that, broadly speaking, the US banking system has a stronger resilience to

12We are not aware of any other paper characterizing the IRF of the expected shortfall process. However, previous
literature has characterized IRF to address volatility spillovers in different markets. The papers dealing with contagion
in financial and commodity market show strongly persistent IRFs in which it takes considerable time (between two and
four years of trading days) for volatility to revert completely after a large shock; see, for instance, Panopoulou and
Pantelidis (2009) and Jin, Lin and Tamvakis (2012).
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global shocks. This empirical evidence essentially agrees with the simulation-based results shown

in Degryse et al. (2010). This paper provides further evidence using a formal econometric approach.

[Insert Figure 4]

Figures 5 to 7 show the IRFs that characterize the response of banks in each economic region

in SB against an (idiosyncratic) unit shock in each of the remaining areas under the three economic

scenarios analyzed. In the stressed scenario, the long-term persistence of a shock would be charac-

terized by explosive patterns (see Table 4), implying that ES becomes more and more negative in

the long-term. In practice, however, the extreme outliers that give rise to non-linearities and bursts

of volatility in low quantiles only occur during very short periods of time. Consequently, we adopt

the same approach as Adams et al. (2014), and assume that, although a shock occurs under stressed

conditions (which characterize the size of the spillovers at the time of the shock), long-term persis-

tence is better characterized by the estimates under the a normal state. We, therefore, assume in the

characterization of the IRF that the market returns to normal state coefficients after the day of the

shock.

The main picture that emerges under country-specific idiosyncratic shocks is completely similar

to that discussed under systematic shocks, showing large differences in both the intensity and the

duration of contagion across the different economic scenarios. In particular, foreign shocks trigger

a larger cross-country response in the expected losses of local banks in a stressed scenario in the

domestic economy. For ease of exposition, we briefly discuss the main results for this scenario, as it

poses the most relevant case. The largest response against a country-specific idiosyncratic shock is

triggered by the US, which causes the ES of CE banks to increase in absolute terms about 20.9% the

size of the standard shock. The half-life of the spillover in this area is 93 days. Nevertheless, the IRF

exhibits a considerable persistence characterized by a low-decay to zero, and it takes over 500 days

to completely remove the effects of the shock. In addition, the CE banking area is very sensitive

to idosyncratic shocks originating in the PE area. A unit shock in peripheral EMU countries leads

the ES of banks in the remaining EMU countries to increase the size of this shock by about 14.75%

as a consequence of cross-border contagion. Persistence, as measured by the half-life, is 107 days.

Shocks initiated in the PE area trigger a smaller response in the US (11.78%) with a shorter half-life

(97 days). According to these estimates, the US is more sensitive to the other regions, since shocks

in the CE and EM area increase the ES in the US banking system in about 15.2% and 14.5% the

size of this shock, respectively, with half-lives of 95 and 109 days, respectively.
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[Insert Figures 5-7]

5.2 Extended equation system

In this section, we discuss the main results from the analysis based on an extended set of economic

areas. Together with the areas in SB, we consider the banking sectors in the UK, Scandinavian coun-

tries, and the BRICs subset of emerging-market economies. This analysis offers a more complete

picture and, furthemore, offers us insight into the robustness of the overall conclusions to omitted

variables. As we discuss below, adding new representative countries (UK) or new economic regions

in both advanced and emerging areas (BR and SC) does not lead to any significant change in the

main conclusions. From a robustness perspective, this result is important because it shows that the

global index is able to control for the effects of omitted areas in the analysis.

Parameter estimates from the 2SQR estimation of the extended equation system and boot-

strapped significance through the maximum-entropy algorithm are presented in Table 5. The overall

analysis of the parameter estimates leads to the same conclusions discussed previously. Cross-

country exposures largely increase and become highly significant in both economic and statistical

terms during periods of distress. Financial vulnerabilities show a considerable degree of heterogene-

ity across the different areas involved, which can be related to the network of bilateral exposures

that characterize international diversification in these areas. Since none of the main conclusions

discussed previously change, we discuss directly the evidence related to the new areas included in

the analysis, focusing particularly on the UK.

[Insert Table 5]

While all the economic areas exhibit significant exposures to US shocks in stressed conditions,

the most vulnerable financial system to idiosyncratic shocks originating in this area is the UK.

According to the 2SQR estimates, a one percent change in the expected losses of US increases

expected losses in UK banks by 0.324 percentage points. While it is a well-known fact that the US

and UK stock markets show strong similarities (Shiller, 1989), the ultimate reason for this remarked

sensitivity in the banking-industry may be related to the fact that US-issued claims account for the

largest portion of total foreign holdings within the UK banking system. According to Degryse et al.

(2010), US claims represent, on average, about 52% of the total foreign claims held by the UK over

BIS reporting countries. More generally, since large-scale banks in the UK have engaged actively in
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international diversification since late 1990, the British system shows large relative vulnerabilities to

any of the remaining areas, particularly, the CE. The vulnerability to this area is characterized by a

contemporaneous spillover coefficient of 0.119. Not surprisingly, therefore, the UK financial system

turns out to be the most vulnerable area to global shocks in the sample, exhibiting a global spillover

coefficient ξ of 0.224. Note that the size of this coefficient nearly doubles the size of the estimated

coefficients in the European regions. Finally, regarding the vulnerability of other economic areas to

shocks originating in the UK financial system, the US exhibits the largest tail spillover coefficient

(0.054). This is not surprising, in the light that the UK represents about 30% of US-held foreign

liabilities in other advanced economies (Degryse et al., 2010). Once more, this result underlines

the importance of cross-border diversification in defining the strength of financial contagion across

international areas.

6 Concluding Remarks

We investigate size, direction and persistence of tail risk spillover in the banking sector for inter-

national regions by applying the state dependent system developed in Adams et al. (2014). The

main evidence states that cross-country exposures largely increase and become highly significant

in both economic and statistical terms during periods of distress. Financial vulnerabilities show a

considerable degree of heterogeneity across the different areas involved, which can be related to

the network of bilateral exposures that characterize international diversification in these areas. We

obtain strong spillover effects from the US market to the rest of the regions considered, specially to

Core Europe and UK. This result implies that downside movements in values of banks index returns

caused increase in the contagion from US market to Europe due to the strong bilateral borrowing

activities between these areas.

The impulse response analysis shows large differences in both the intensity and the duration

of contagion across the different economic scenarios. In particular, foreign shocks trigger a larger

cross-country response in the expected losses of local banks in a stressed scenario in the domestic

economy. The largest response against a country-specific idiosyncratic shock is triggered by the

US. The most vulnerable area to systematic shocks is Europe in stressed scenario and US banking

system has stronger resilience to global shocks. The empirical results show that not only does a

volatility spillover exist but there is also an important spillover effects in bank returns distribution

tails that still remain an unexplored area in spillover research.
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The results of this paper are of particular interest for both policy makers and investors. The

latter can improve their hedging and portfolio diversification strategies exploiting the knowledge

regarding the way the financial markets influence one another. For policy makers an understanding

of financial contagion would clearly be beneficial, providing them useful information about the

formulation of possible decoupling strategies to insulate the economy from contagious effects and

thus avoiding future spreading of crises and preserving the stability of the financial system.
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Tables

Table 1: Descriptive statistics for daily returns of representative indices of the local banking-
industry in different economic regions

Region Meana Mediana Std.a Min. Max. Skew. Kurt.
US 0.0960 0.9463 32.4195 -0.1774 0.1602 0.0903 17.1664
BR 12.1923 25.9466 26.7714 -0.1062 0.1434 0.0154 9.7893
PE -5.0453 4.4639 31.2875 -0.1061 0.1860 0.1738 10.0923
CE -3.5099 12.0845 34.2854 -0.1338 0.1641 0.0716 9.9634
UK -4.0268 12.0845 33.8417 -0.2161 0.1954 -0.1537 16.0296
SC 7.1017 4.6113 32.2620 -0.1462 0.1489 0.1792 10.6774
EM 8.2132 25.4218 20.4843 -0.0928 0.1130 -0.3839 10.9448
GB 0.9145 16.3191 20.5831 -0.0865 0.1244 -0.0792 16.0296

This table shows the main descriptive statistics for bank portfolio daily returns in the set of regions
considered: US (United States), BR (BRICs), PE (Peripheral EMU), CE (Core EMU), UK (United
Kingdom), SC (Scandinavia), EM (Emerging Markets), GB (Global Banking). Mean, median and
standard deviation are computed by annualizing return data. Minimum, maximum, skewness,
kurtosis and sample size are computed from daily return data.

Table 2: Expected Shortfall processes parameters estimation from the expectile-based SAV model
in equations (5) and (6) for the set of analyzed regions

Region βi0 βi1 βi2 γi2 θi λ̂i pvTUC pvT I pvTCC

US -0.0010 0.8645 -0.3804 -0.4867 0.0028 0.0100 0.9947 0.3934 0.6948
BR -0.0033 0.7952 -0.4080 -0.4809 0.0018 0.0100 0.9947 0.4001 0.6930
PE -0.0009 0.8975 -0.2561 -0.3153 0.0023 0.0100 0.9947 0.3934 0.6948
CE -0.0017 0.8507 -0.3757 -0.4304 0.0014 0.0100 0.9947 0.3757 0.6754
UK -0.0034 0.6900 -0.8902 -1.0932 0.0023 0.0100 0.9947 0.3646 0.6545
SC -0.0010 0.8874 -0.2897 -0.3557 0.0023 0.0100 0.9947 0.3934 0.6948
EM -0.0022 0.8043 -0.4165 -0.5337 0.0028 0.0100 0.9947 0.3934 0.6948
GB -0.0008 0.8815 -0.2849 -0.3487 0.0022 0.0100 0.9947 0.4001 0.6930

This table presents the ALS ES parameter estimation from the expectile-based SAV-model in the
entire set of regions considered for equations (5) and (6) and the main backtesting tests. The last
three columns present the p-value for TUC, TI and TCC that denote the results for Unconditional
Coverage, Independence and Conditional Coverage test. ES are estimated from daily demeaned
returns of bank indices.
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Table 3: Descriptive statistics and correlations for the estimates of the expectile-based Expected
Shortfall processes from equation (6) for the set of analyzed regions

Panel A.- ES Descriptives Statistics
Region Mean Median Std. Min. Max. Skew. Kurt.
US -0.0537 -0.0423 0.0377 -0.2563 -0.0155 -2.5469 10.5655
BR -0.0462 -0.0429 0.0159 -0.1931 -0.0250 -3.6073 23.3516
PE -0.0517 -0.0439 0.0245 -0.1804 -0.0198 -1.4161 5.2391
CE -0.0544 -0.0455 0.0279 -0.1997 -0.0211 -1.8280 6.8485
UK -0.0624 -0.0520 0.0382 -0.3857 -0.0178 -2.8131 14.9801
SC -0.0533 -0.0440 0.0282 -0.1972 -0.0219 -2.2824 8.9210
EM -0.0384 -0.0344 0.0151 -0.1802 -0.0197 -3.5055 22.7557
GB -0.0337 -0.0296 0.0163 -0.1353 -0.0161 -2.4042 14.9801

Panel B.- ES Correlations
Region US BR PE CE UK SC EM GB
US 1.00
BR 0.65 1.00
PE 0.66 0.52 1.00
CE 0.77 0.64 0.91 1.00
UK 0.82 0.65 0.71 0.82 1.00
SC 0.85 0.67 0.84 0.91 0.83 1.00
EM 0.70 0.87 0.62 0.72 0.71 0.76 1.00
GB 0.91 0.77 0.80 0.90 0.86 0.93 0.83 1.00

Panel A presents the main descriptive statistics (mean, median, standard deviation, maximum,
minimum, skewness and kurtosis) of the Expected Shortfall processes at the shortfall probability
λ=0.01 for the daily demeaned returns banks portfolios corresponding to the whole set of regions
considered. Panel B shows the cross correlations between the Expected Shortfall estimations.
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Appendix: Bank Index details

In Section 3 we describe the dataset formed by international banking portfolios. This appendix

contains several tables that report the banks and countries that form the representative indices of the

local banking-industry in different economic regions such as the US, BRICs, Peripheral EMU, Core

EMU, Scandinavia, the UK, Emerging Markets and the Global Banking index. This information is

available in Datastream for the DS Banks Index construction of each region. We report the banks and

countries for specific regional and country indices. In order to save space, we report the main areas

and number of banks in emerging and global indices. Complete lists are available upon request.

Therefore, the following tables provide a list with the banks and countries or areas included in

every index.

Table 6: United States Index.

Table 7: BRICS Index.

Table 8: Peripheral EMU Index.

Table 9: Core EMU Index.

Table 10: United Kingdom Index.

Table 11: Scandinavia Index.

Table 12: Emerging Markets Index.

Table 13: Global Banking Index

41



Table 6: Banks included in the United States Index

Bank Country

Bank of America US
Bankunited US
BB&T US
Bok Financial US
Citigroup US
City National US
Comerica US
Commerce Bancshares US
Credicorp US
Cullen Frost Bankers US
East West Bancorp US
Fifth Third Bancorp US
First Niagara Financial Group US
First Republic Bank US
Firstmerit US
Hudson City Bancorp US
Huntington Bancshares US
JP Morgan Chase and Company US
Keycorp US
M&T Bank US
New York Community Bancorp US
Peoples United Financial US
PNC Financial Services Group US
Prosperity Bancshares US
Regions Financial New US
Signature Bank US
Suntrust Banks US
SVB Financial Group US
Synovus Financial US
TFS Financial US
United States Bancorp US
Wells Fargo and Company US
Zions Bancorporation US
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Table 7: Banks and countries included in the BRICs Index

Bank Country

Banco Brasil On Brazil
Bradesco On Brazil
Bradesco PN Brazil
Itauunibanco On Brazil
Itauunibanco PN Brazil
Santander Bearer On Brazil
Santander Bearer PN Brazil
Agricultural Bank of China ’H’ China
Bank of China ’H’ China
Bank of Communications ’H’ China
China Citic Bank ’H’ China
China Construction Bank ’H’ China
China Everbright Bank ’H’ China
China Merchants Bank ’H’ China
China Minsheng Banking ’H’ China
Industrial and Commercial Bank of China ’H’ China
Allahabad Bank India
Axis Bank India
Bank of Baroda India
Bank of India India
Canara Bank India
Central Bank of India India
Corporation Bank India
Federal Bank India
HDFC Bank India
I N G Vysya Bank India
Icici Bank India
Idbi Bank India
Indian Bank India
Indian Overseas Bank India
Indusind Bank India
Jammu and Kashmir Bank India
Oriental Bank of Commerce India
Punjab National Bank India
State Bank of India India
Syndicate Bank India
UCO Bank India
Union Bank of India India
Yes Bank India
Moscow Municipal Bank Moscow Russian Federation
Mosobl Bank Russian Federation
Rosbank Russian Federation
Sberbank of Russia Russian Federation
Sberbank Russia Preference Russian Federation
VTB Bank Russian Federation
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Table 8: Banks and countries included in the Peripheral EMU Index

Bank Country

Alpha Bank Greece
Attica Bank Greece
Bank of Greece Greece
Bank of Piraeus Greece
Eurobank Ergasias Greece
General Bank of Greece Greece
National Bank of Greece Greece
Bank of Ireland Ireland
Banca Carige Italy
Banca Finnat Euramerica Italy
Banca Monte dei Paschi Italy
Banca Piccolo Credito Valtell Italy
Banca Popolare di Milano Italy
Banca Popolare di Sondrio Italy
Banca Popolare Emilia Romagna Italy
Banca Popolare Etruria Lazio Italy
Banca Profilo Italy
Banco di Desio E Della Brianza Italy
Banco Popolare Italy
Credito Bergamasco Italy
Credito Emiliano Italy
Intesa Sanpaolo Italy
Intesa Sanpaolo RSP Italy
Mediobanca Banca di Credito Financial Italy
Unicredit Italy
Unione di Banche Italian Italy
Banco BPI Portugal
Banco Comercial Portugues ’R’ Portugal
Banco Espirito Santo Portugal
Banif Portugal
Montepio Portugal
Banco Bilbao Vizcaya Argentaria Spain
Banco de Sabadell Spain
Banco Intercontinental Espanol ’R’ Spain
Banco Popular Espanol Spain
Banco Santander Spain
Bankia Spain
Caixabank Spain
Liberbank Spain
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Table 9: Banks and countries included in the Core EMU Index

Bank Country

Bank FUR Tirol und Vorarlberg Austria
Banks Bank Austria
Erste Group Bank Austria
Oberbank Austria
Oberbank Preference Austria
Raiffeisen Bank International Austria
Banque Nationale de Belgique Belgium
KBC Ancora Belgium
KBC Group Belgium
Hellenic Bank Cyprus
USB Bank Cyprus
Aktia ’A’ Finland
Pohjola Pankki A Finland
Banque Nationale de Paris Paribas France
CIC ’A’ France
Crcam Nord de France CCI France
Credit Agricole France
Credit Agricole Brie Picardie France
Credit Agricole Ile de France France
Credit Foncier de Monaco France
Natixis France
Societe Generale France
Commerzbank Germany
Deutsche Bank Germany
Deutsche Postbank Germany
IKB Deutsche Industriebank Germany
Oldenburgische Landesbank Germany
Umweltbank Germany
Espirito Santo Financial Group Luxembourg
Espirito Santo Financial Group Registered Luxembourg
Bank of Valletta Malta
Fimbank Malta
HSBC Bank Malta Malta
Lombard Bank Malta
American Hypobank Netherlands
Van Lanschot Netherlands
Abanka Vipa Slovenia
Nova Kreditna Banka Maribor Slovenia
Probanka Prednostne Preference Slovenia
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Table 10: Banks included in the United Kingdom Index

Bank Country

Bank of Georgia Holdings UK
Barclays UK
HSBC Holdings (Ordinary $0.50) UK
Lloyds Banking Group UK
Standard Chartered UK
Royal Bank of Scotland Group UK

Table 11: Banks and countries included in the Scandinavian Index

Bank Country

Danske Bank Denmark
Jyske Bank Denmark
Ringkjobing Landbobank Denmark
Spar Nord Bank Denmark
Sydbank Denmark
Aktia ’A’ Finland
Pohjola Pankki A Finland
DNB Norway
Sparebank 1 Series Bank Norway
Sparebank 1 SMN Norway
Nordea Bank Sweden
SEB ’A’ Sweden
Svenska Handelsbanken ’A’ Sweden
Swedbank ’A’ Sweden
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Table 12: Number of banks and areas included in the Emerging Markets Index

Number of Banks Area

33 Africa
118 Asia
45 BRICs
41 Europe
51 Latin America

This table reports the main areas in the emerging markets index and the corresponding
number of banks. Africa is formed by Egypt, Morocco, Nigeria and South Africa; Asia
contains Bahrain, Dubai, Indonesia, Jordan, Kuwait, Malasya, Oman, Pakistan, Philip-
pines, Qatar, Sri Lanka, Taiwan and Thailand; Europe is formed by Bulgaria, Croatia,
Czech Republic, Hungary, Poland, Romania, Slovenia and Turkey. Finally, Latin Amer-
ica is composed of Argentina, Chile, Colombia, Mejico, Peru and Venezuela.

Table 13: Number of banks and areas included in the Global Banking Index

Number of Banks Area

33 Africa
213 Asia
6 Australia
45 BRICs
8 Canada
38 Core EMU
51 Latin America
39 Peripheral EMU
57 Rest of Europe
14 Scandinavia
6 United kingdom
33 United States

This table reports the main areas in the global banking index and the corresponding num-
ber of banks. Africa is formed by Egypt, Morocco, Nigeria and South Africa; Asia covers
Abu Dabi, Bahrain, Dubai, Dubai, Hong Kong, Indonesia, Israel, Japan, Jordan, Kuwait,
Malasya, Oman, Pakistan, Philippines, Qatar, Singapur, South Korea, Sri Lanka, Taiwan
and Thailand; Latin America is comprised of Argentina, Chile, Colombia, Mejico, Peru
and Venezuela. Finally, rest of Europe is made up of Bulgaria, Croatia, Czech Republic,
Hungary, Poland, Romania, Slovenia Switzerland and Turkey.
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